

DPP – 1

Video Solution on Website:- https://physicsaholics.com/home/courseDetails/59

Video Solution on YouTube:-

https://youtu.be/faSLnSanUgI

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/33

Q 1. A thermodynamic system is taken from state A to B along ACB and is brought back to A along BDA as shown in the PV diagram. The net work done by system during the complete cycle is given by the area

Q 2. A thermodynamic system is taken through the cycle PQRSP process. The net work done by the system is

р

Q 3. Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram. The work done on the gas in taking it from D to A is:

Q 4. Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram. Assume the gas to be ideal the magnitude of work done on the gas in taking it form A to B is:

Q 5. A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T, diagram. The work done by gas in AB, BC and CA respectively

Q 6. A system changes from the state (P_1, V_1) to (P_2, V_2) as shown in the diagram. The work done by the system is

- (a) $12 \times 10^4 J$ (b) $12 \times 10^8 J$ (c) $12 \times 10^5 J$ (d) $6 \times 10^4 J$
- Q 7. Figure demonstrates a polytropic process (i.e. $PV^n = \text{constant}$) for an ideal gas. The work done by the gas be in the process AB is:

16P

P.

V_a

2V.

- (a) $\frac{15}{2} P_o V_o$ (b) $\frac{14}{3} P_o V_o$ (c) $8P_o V_o$ (d) Insufficient information
- Q 8. The work done in an isochoric process is (a) zero (b) +ve(c) -ve (d) Any of these
- Q 9. An ideal gas is taken around the cycle ABCA shown in P-V diagram. The net work done by the gas during the cycle is equal to

- (a) $12P_1V_1$ (b) $6P_1V_1$ (c) $3P_1V_1$
- (d) $P_1 V_1$
- Q 10. A thermodynamic system undergoes cyclic process ABCDA as shown in figure. The work done by the system is

Q 11. An ideal gas undergoes cyclic process ABCDA as shown in given P-V diagram. The amount of work done by the gas is

(a) $6P_oV_o$ (b) $-2P_oV_o$ (c) $+2P_oV_o$ (d) $+4P_oV_o$

Answer Key

Q.1 c	Q.2	b	Q.3	a	Q.4	C	Q.5	c
Q.6 c	Q.7	b	Q.8	a	Q.9	c	Q.10	d
Q.11 b							\bigcap	
							M	
				L	J		nC	Ş
		RE		200	2	O_{\parallel}	500	
OP		20	C	SA	720			
Ro	72,1	15						
P	(L)	V						